106 research outputs found

    Optimizing a joint multi-operator planning to reduce deployment costs and urban hinder

    No full text
    Unavailable roads and sidewalks are common in any city, often linked to utility works, urgent repairs, periodic maintenance or installing new infrastructure. Independent of the cause of the utility work, hinder for the city environment is common due to closed roads and associated diversions, unreachable shops, or noise disturbance for people near the construction sites. Despite the fact this could lead to less hinder and also to noteworthy cost reductions, on only a limited number of locations do utility operators decide to collaborate, mainly due to little communication between the different utility operators. To address this issue, we introduce an abstract score-based model which can score a multi-utility planning for both single-actor as well as multi-actor parameters. This model aims to maximally respect the budget of each actor, while optimizing the levels of synergy between multiple actors. Using Mixed Integer Linear Programming, a new synergy-focused multi-utility planning can be generated. This planning model has been applied to real data, thereby showing the model can increase the amount of collaboration expressed as 'number of weeks in collaboration' up to a significant 94%. As this is a theoretical model for a practical problem, an extensive sensitivity analysis was performed to verify the impact of the different parameters at play. We have shown the model is able to generate major improvements under a large range of constraints. Although the results are promising, we do argue that this solution should not be considered a black box to optimize a multi-utility planning without further human intervention

    Specific Radius Change of Quantum Dot inside the Lipid Bilayer by Charge Effect of Lipid Head-Group

    Get PDF
    We studied the quantum dot-liposome complex (QLC), which is the giant unilamellar vesicle with quantum dots (QDs) incorporated in its lipid bilayer. A spin coating method in conjunction with the electroformation technique yielded vesicles with highly homogeneous unilamellar structure. We observed QD size dependence of the QLC formation: QLCs form with blue, green and yellow-emission QD (core radius ~1.05 nm, 1.25 nm and 1.65 nm) but not with red-emission QD (core radius ~2.5 nm). In order to explain this size dependence, we made a simple model explaining the QD size effect on QLC formation in terms of the molecular packing parameter and the lipid conformational change. This model predicts that QDs below a certain critical size (radius ≈ 1.8 nm) can stably reside in a lipid bilayer of 4 - 5 nm in thickness for Egg-PC lipids. This is consistent with our previous experimental results. In the case of red-emission QD, QD-aggregations are only observed on the fluorescent microscopy instead of QLC. We expected that the reduction of packing parameter (P) would lead to the change of specific QD radius. This prediction could be verified by our experimental observation of the shift of the specific QD size by mixing DOPG

    Application of Social Network Analysis to Health Care Sectors

    Get PDF
    Objectives: This study aimed to examine the feasibility of social network analysis as a valuable research tool for indicating a change in research topics in health care and medicine. Methods: Papers used in the analysis were collected from the PubMed database at the National Library of Medicine. After limiting the search to papers affiliated with the National Institutes of Health, 27,125 papers were selected for the analysis. From these papers, the top 100 non-duplicate and most studied Medical Subject Heading terms were extracted. NetMiner V.3 was used for analysis. Weighted degree centrality was applied to the analysis to compare the trends in the change of research topics. Changes in the core keywords were observed for the entire group and in three-year intervals. Results: The core keyword with the highest centrality value was “Risk Factor, ” followed b

    From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases

    Get PDF
    Polyisoprenoid alcohols are membrane lipids that are present in every cell, conserved from archaea to higher eukaryotes. The most common form, alpha-saturated polyprenol or dolichol is present in all tissues and most organelle membranes of eukaryotic cells. Dolichol has a well defined role as a lipid carrier for the glycan precursor in the early stages of N-linked protein glycosylation, which is assembled in the endoplasmic reticulum of all eukaryotic cells. Other glycosylation processes including C- and O-mannosylation, GPI-anchor biosynthesis and O-glucosylation also depend on dolichol biosynthesis via the availability of dolichol-P-mannose and dolichol-P-glucose in the ER. The ubiquity of dolichol in cellular compartments that are not involved in glycosylation raises the possibility of additional functions independent of these protein post-translational modifications. The molecular basis of several steps involved in the synthesis and the recycling of dolichol and its derivatives is still unknown, which hampers further research into this direction. In this review, we summarize the current knowledge on structural and functional aspects of dolichol metabolites. We will describe the metabolic disorders with a defect in known steps of dolichol biosynthesis and recycling in human and discuss their pathogenic mechanisms. Exploration of the developmental, cellular and biochemical defects associated with these disorders will provide a better understanding of the functions of this lipid class in human

    In vitro and in vivo evaluation of a single chain antibody fragment generated in planta with potent rabies neutralisation activity.

    Get PDF
    Rabies causes more than 60,000 human deaths annually in areas where the virus is endemic. Importantly, rabies is one of the few pathogens for which there is no treatment following the onset of clinical disease with the outcome of infection being death in almost 100% of cases. Whilst vaccination, and the combination of vaccine and rabies immunoglobulin treatment for post-exposure administration are available, no tools have been identified that can reduce or prevent rabies virus replication once clinical disease has initiated. The search for effective antiviral molecules to treat those that have already developed clinical disease associated with rabies virus infection is considered one of the most important goals in rabies research. The current study assesses a single chain antibody molecule (ScFv) based on a monoclonal antibody that potently neutralises rabies in vitro as a potential therapeutic candidate. The recombinant ScFv was generated in Nicotiana benthamiana by transient expression, and was chemically conjugated (ScFv/RVG) to a 29 amino acid peptide, specific for nicotinic acetylcholine receptor (nAchR) binding in the CNS. This conjugated molecule was able to bind nAchR in vitro and enter neuronal cells more efficiently than ScFv. The ability of the ScFv/RVG to neutralise virus in vivo was assessed using a staggered administration where the molecule was inoculated either four hours before, two days after or four days after infection. The ScFv/RVG conjugate was evaluated in direct comparison with HRIG and a potential antiviral molecule, Favipiravir (also known as T-705) to indicate whether there was greater bioavailability of the ScFv in the brains of treated mice. The study indicated that the approach taken with the ScFv/RVG conjugate may have utility in the design and implementation of novel tools targetting rabies virus infection in the brain

    Herbivore regulation of plant abundance in aquatic ecosystems.

    Get PDF
    Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small-scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta-analysis of the outcomes of plant-herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between-taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore-plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed-nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed-nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore-plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant-herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top-down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants

    Sociotechnical agendas: reviewing future directions for energy and climate research

    Get PDF
    The field of science and technology studies (STS) has introduced and developed a “sociotechnical” perspective that has been taken up by many disciplines and areas of inquiry. The aims and objectives of this study are threefold: to interrogate which sociotechnical concepts or tools from STS are useful at better understanding energy-related social science, to reflect on prominent themes and topics within those approaches, and to identify current research gaps and directions for the future. To do so, the study builds on a companion project, a systematic analysis of 262 articles published from 2009 to mid-2019 that categorized and reviewed sociotechnical perspectives in energy social science. It identifies future research directions by employing the method of “co-creation” based on the reflections of sixteen prominent researchers in the field in late 2019 and early 2020. Drawing from this co-created synthesis, this study first identifies three main areas of sociotechnical perspectives in energy research (sociotechnical systems, policy, and expertise and publics) with 15 topics and 39 subareas. The study then identifies five main themes for the future development of sociotechnical perspectives in energy research: conditions of systematic change; embedded agency; justice, power, identity and politics; imaginaries and discourses; and public engagement and governance. It also points to the recognized need for pluralism and parallax: for research to show greater attention to demographic and geographical diversity; to stronger research designs; to greater theoretical triangulation; and to more transdisciplinary approaches

    Fabricating nanowire devices on diverse substrates by simple transfer-printing methods

    No full text
    The fabrication of nanowire (NW) devices on diverse substrates is necessary for applications such as flexible electronics, conformable sensors, and transparent solar cells. Although NWs have been fabricated on plastic and glass by lithographic methods, the choice of device substrates is severely limited by the lithographic process temperature and substrate properties. Here we report three new transfer-printing methods for fabricating NW devices on diverse substrates including polydimethylsiloxane, Petri dishes, Kapton tapes, thermal release tapes, and many types of adhesive tapes. These transfer-printing methods rely on the differences in adhesion to transfer NWs, metal films, and devices from weakly adhesive donor substrates to more strongly adhesive receiver substrates. Electrical characterization of fabricated NW devices shows that reliable ohmic contacts are formed between NWs and electrodes. Moreover, we demonstrated that Si NW devices fabricated by the transfer-printing methods are robust piezoresistive stress sensors and temperature sensors with reliable performance
    corecore